
T – ds relations
Entropy change for a process can be evaluated by integrating δQ/T along 
some imaginary internally reversible path between the actual end states

From energy equation for a closed stationary system (a reversible process)

,int rev int rev outQ W dUδ −δ =

int revQ TdSδ = ,int rev outW PdVδ =
Thus TdS dU PdV= +

Or per unit mass Tds du Pdv= +
Called Gibbs equation

From the definition of enthalpy
h u Pv= + dh du Pdv vdP→ = + +

( )Tds dh Pdv vdP Pdv= − − +

Tds dh vdP= −Thus

and



Entropy change of liquids and solids

Tds du Pdv= +

For incompressible substance
(specific volume remains constant)

0dv ≅
p vC C C= =

For ideal gas v pdu C dT and dh C dT= =

Entropy equation
(valid in both reversible and 
irreversible processes)

du CdTds
T T

= =

Entropy change of 
solid or liquid ( )

2
2

2 1
11

lnav
TdTs s C T C

T T
− = ≅∫

where Cav = average specific heat of substance over the given temperature



Entropy change of liquids and solids

For an isentropic process     Δs = 0

2
2 1

1

ln 0av
Ts s C
T

− = = 2 1T T=

This means that temperature is constant  Isothermal process  



Example: effect of density of a liquid on entropy

Liquid methane is commonly used in various cryogenic applications. The
critical temperature of methane is 191 K (or 82°C), and thus methane must

be maintained below 191 K to keep it in liquid phase. The properties of
liquid methane at various temperatures and pressures are given in Table.
Determine the entropy change of liquid methane as it undergoes a process
from 110 K and 1 MPa to 120 K and 5 MPa
(a) using tabulated properties and
(b) approximating liquid methane as an incompressible substance. What is
the error involved in the latter case?



Example: effect of density of a liquid on entropy
(a) Find entropy from actual data

State 1 11

,11

4.875 kJ/kg.K1 MPa
3.471 kJ/kg.K110 K p

sP
CT

== ⎫
⎬ == ⎭

From following Table 

State 2 22

,22

5.145 kJ/kg.K5 MPa
3.486 kJ/kg.K120 K p

sP
CT

== ⎫
⎬ == ⎭

2 1 5.145 4.875 0.27 kJ/kg.Ks s sΔ = − = − =



Example: effect of density of a liquid on entropy
(b) Find entropy from approximation assuming methane to be 

incompressible 

( )
2

2
2 1

11

lnav
TdTs s C T C

T T
− = ≅∫

,1 ,2
,

3.471 3.486 3.7485 kJ/kg.K
2 2

p p
p ave

C C
C

+ +
= = =

Thus
( ) 1203.4785 ln 0.303 kJ/kg.K

110
sΔ = =

( )0.27 0.303
0.122 12.2%

0.27
actual ideal

actual

s s
Error

s
Δ −Δ −

= = =
Δ

Due to the change of density of liquid methane!



Entropy change of ideal gas

Tds du Pdv= +

Tds dh vdP= −

du Pdvds
T T

= + v
dT dvC R
T v

= +

where for Ideal gas u = CvdT and Pv = RT

( )
2

2
2 1

11

lnv
vdTs s C T R

T v
⎧ ⎫

− = +⎨ ⎬
⎩ ⎭
∫Thus entropy change

dh vdPds
T T

= − p
dT RdPC
T P

= −

where for Ideal gas h = CpdT and Pv = RT

Thus entropy change ( )
2

2
2 1

11

lnp
PdTs s C T R

T P
⎧ ⎫

− = −⎨ ⎬
⎩ ⎭
∫



Entropy change of ideal gas (cont.)

( )
2

2
2 1

11

lnv
vdTs s C T R

T v
⎧ ⎫

− = +⎨ ⎬
⎩ ⎭
∫

Entropy change

( )
2

2
2 1

11

lnp
PdTs s C T R

T P
⎧ ⎫

− = −⎨ ⎬
⎩ ⎭
∫

For constant specific heat, Cp,1-2 = Cp,av and Cv,1-2 = Cv,av

2 2
2 1 ,

1 1

ln lnp av
T Ps s C R
T P

− = −2 2
2 1 ,

1 1

ln lnv av
T vs s C R
T v

− = +

Acceptable when temperature change is small



Isentropic process of ideal gas (cont.)
For constant specific heat

2 2
2 1 ,

1 1

0 ln lnv av
T vs s C R
T v

− = → = −

2 1

1 2

ln ln
v

R
CT v

T v
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

1

2 1

1 2

k
T v
T v

−
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

p vR C C= −

/p vk C C=

2 2
2 1 ,

1 1

0 ln lnp av
T Ps s C R
T P

− = → =

(a)

(b)

2 2

1 1

ln ln
p

R
CT P

T P
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

1

2 2

1 1

k
kT P

T P

−

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

2 1

1 2

k
P v
P v

⎛ ⎞
= ⎜ ⎟
⎝ ⎠



Example: isentropic compression of an ideal gas
Helium gas is compressed by an adiabatic compressor from an initial state
of 14 psia and 50°F to a final temperature of 320°F in a reversible manner.
Determine the exit pressure of helium. Specific heat ratio k of helium is 
1.667

( ) ( )OR F 459.67T T= +



Example: isentropic compression of an ideal gas
Since helium is at high temperature relative to its critical point value of 
-450OF, helium can be treated as an ideal gas 

1

2 2

1 1

k
kT P

T P

−

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

( )
1.667

1 1.667 1
2

2 1
1

78014 psia 40.5 psia
510

k
kP RP P

P R

− −⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠



Air initially at 0.1 MPa, 27oC, is compressed reversibly to a final state.
(a) Find the entropy change of the air when the final state is 0.5 MPa, 227oC.
(b) Find the entropy change when the final state is 0.5 MPa, 180oC.
(c) Find the temperature at 0.5 MPa that makes the entropy change zero.

Example

b.

a.

Assume air is an ideal gas with constant specific heats.



c
b

a

1

s

T

P1

P22

The T-s plot is

Example
(c) Find the temperature at 0.5 MPa that makes the entropy change zero.



Isentropic, Steady Flow through Turbines, Pumps, and Compressors

( ) ( )

E E

Q m h V gz W m h V gz

in out

net i
inlets

i
i

i net e
exits

e
e

e

=

+ + + = + + +∑ ∑
2 2

2 2
For a one-entrance, one-exit device undergoing an internally reversible 
process, this general equation of the conservation of energy reduces to, on a 
unit of mass basis

rev revw q dh dke dpe= − − −δ δ

Reversible Steady-Flow Work

The general first law for the steady-flow control volume is

Consider a turbine, pump, compressor, or other steady-flow control 
volume, work-producing device.

revq T ds=δ

revw T ds dh dke dp= − − −δ
where



Using the Gibb’s second equation, this becomes

rev

dh T ds v dP
w v dP dke dpeδ

= +
= − − −

Integrating over the process, this becomes

Neglecting changes in kinetic and potential energies, reversible work becomes

Based on the classical sign convention, this is the work done by the control 
volume.  When work is done on the control volume such as compressors or 
pumps, the reversible work going into the control volume is

Reversible work input

Reversible Steady-Flow Work



For the steady-flow of an incompressible fluid through a device that involves 
no work interactions (such as nozzles or a pipe section), the work term 
is zero, and the equation above can be expressed as the well-know 
Bernoulli equation in fluid mechanics. 

v P P ke pe( )2 1 0− + + =Δ Δ

Reversible Steady-Flow Work



Determine the compressor work input required to compress steam
isentropically from 100 kPa to 1 MPa, assuming that the steam exists as
(a) saturated liquid and (b) saturated vapor at the inlet state.

Assumptions

1. Steady operating condition
2. Neglect PE and KE
3. Isentropic process

3
1 @100 kPa 0.001043 m /kgfv v= =

( )
2

, 1 2 1
1

rev inw vdP v P P= ≅ −∫
( )( )3

3

1 kJ= 0.001043 m /kg 1000 100 kPa
1 kPa.m

−
kJ0.94
kg

=

(a) Steam is a saturated liquid initially

Example



(b) From information pressure changes from 100 kPa to 1 MPa

Thus v varies with P

Tds dh vdP= − But for a isentropic process dh vdP=

Thus 
2 2

, 2 1
1 1

rev inw vdP dh h h= = = −∫ ∫

State 1 
11

1

2675.5 kJ/kg100 kPa
s 7.3594 kJ/kg.K( . )
hP

sat vapor
== ⎫

⎬ =⎭

State 2 
2

2
2 1

1 MPa
3195.5 kJ/kg

P
h

s s
= ⎫

=⎬= ⎭

, 3195.5 2675.5 520 kJ/kgrev inw = − =

From table 

From table  

Example



Saturated liquid water at 10 kPa leaves the condenser of a steam power 
plant and is pumped to the boiler pressure of 5 MPa.  Calculate the work for 
an isentropic pumping process.

a.  Work for the reversible process can be applied to the isentropic process 

( )W mv P PC = −1 2 1

Here at 10 kPa, v1 = vf = 0.001010 m3/kg. 

1 2 1( )C
C

Ww v P P
m

= = −

Example

3

30.001010 (5000 10)

5.04

m kJkPa
kg m kPa

kJ
kg

= −

=

The work per unit mass flow is 



b.  Using the steam table data for the isentropic process, we have

− = −

− − = −

( )
( ) ( )

W m h h
W m h h

net

C

2 1

2 10

From the saturation pressure table,
1

1

1

191.81
10

. 0.6492

kJh
P kPa kg

kJSat Liquid s
kg K

⎧ =⎪= ⎫⎪
⎬⎨
⎭⎪ =
⎪ ⋅⎩

Since the process is isentropic, s2 = s1.  Interpolation in the compressed 
liquid tables gives

2

2
2 1

5
197.42

0.6492

P MPa
kJhkJs s kg

kg K

= ⎫
⎪ =⎬= = ⎪⋅ ⎭

Example



The work per unit mass flow is 

2 1( )

(197.42 191.81)

5.61

C
C

Ww h h
m

kJ
kg

kJ
kg

= = −

= −

=

Example



Most steady-flow devices operate under adiabatic conditions, and the ideal 
process for these devices is the isentropic process.  

- Turbine, 
- Compressor or Pump 
- Nozzle 

Isentropic device 

Isentropic or adiabatic efficiencies



ηT
a

s

Actual turbine work
Isentropic turbine work

w
w

= =

1 2

1 2

a
T

s

h h
h h

η −
≅

−

Turbine

The isentropic work is the maximum possible work output that the adiabatic 
turbine can produce; therefore, the actual work is less than the isentropic 
work.  Since efficiencies are defined to be less than 1, the turbine isentropic 
efficiency is defined as 



The isentropic work of the turbine in is 1152.2 kJ/kg.  If the isentropic 
efficiency of the turbine is 90 percent, calculate the actual work.  Find the 
actual turbine exit temperature or quality of the steam.

(0.9)(1153.0 ) 1037.7

a
T

s

a T s

wActual turbine work
Isentropic turbine work w

kJ kJw w
kg kg

η

η

= =

= = =

ηT
a

s

h h
h h

≅
−
−

1 2

1 2

Steam enters the turbine at 1 MPa, 600oC, and expands to 0.01 MPa. 

Example



From the steam tables at state 1

1
1

1
1

3698.6
1
600 8.0311

o

kJh
P MPa kg

kJT C s
kg K

⎧ =⎪= ⎫⎪
⎬⎨

= ⎭⎪ =
⎪ ⋅⎩

At the end of the isentropic expansion process

2
2

2 1
2

0.01 2545.6
8.0311

0.984

s

s
s

kJP MPa h
kgkJs s

xkg K

= ⎧⎫ =⎪⎪
⎬⎨= = ⎪⎪ =⋅ ⎭⎩

The actual turbine work per unit mass flow is 

1 2a aw h h= −

(3698.6 1037.7) kJ
kg

= − 2660.9 kJ
kg

=2 1a ah h w= −

Example



For the actual turbine exit state 2a, the computer software gives 

A second method for finding the actual state 2 comes directly from the 
expression for the turbine isentropic efficiency. Solve for h2a.

2 1 1 2( )

3698.6 (0.9)(3698.6 2545.6)

2660.9

a T sh h h h
kJ kJ
kg kg
kJ
kg

η= − −

= − −

=

Then P2 and h2a give T2a =  86.85oC.

Example (cont.)



The isentropic work is the minimum possible work that the adiabatic 
compressor requires; therefore, the actual work is greater than the isentropic 
work.  Since efficiencies are defined to be less than 1, the compressor 
isentropic efficiency is defined as 

Compressor and Pump:

Compressor
or pump

T1
P1

WC

ηC
s

a

Isentropic compressor work
Actual compressor work

w
w

= =

ηC
s

a

h h
h h

≅
−
−

2 1

2 1



Air enters a compressor and is compressed adiabatically from 0.1 MPa, 
27oC, to a final state of 0.5 MPa.  Find the work done on the air for a 
compressor isentropic efficiency of 80 percent.

Ideal gas equations, assume constant properties.

2a

2s

1

s

T P2

P1

Example

Assume isentropic, steady-flow and then apply the compressor isentropic 
efficiency to find the actual work.



For the isentropic case, Qnet = 0.  Assuming steady-state, steady-flow, and 
neglecting changes in kinetic and potential energies for one entrance, one 
exit, the first law is E E

m h W m h
in out

Cs s

=

+ =1 1 2 2

The conservation of mass gives
m m m1 2= =

The conservation of energy reduces to

( )

( )

W m h h

w W
m

h h

Cs s

Cs
Cs

s

= −

= = −

2 1

2 1

Conservation Principles:

Example (cont.)

Using the ideal gas assumption with constant specific heats, the isentropic 
work per unit mass flow is

w C T TCs p s= −( )2 1



The isentropic temperature at state 2 is found from the isentropic relation

Example (cont.)

1

2
2 1

1

k
k

s
PT T
P

−

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

( ) 0.5 MPa= 27+273 K 475.4 K
0.1

1.4-1
1.4⎛ ⎞ =⎜ ⎟

⎝ ⎠
The conservation of energy becomes

2 1( )Cs p sw C T T= −

The compressor isentropic efficiency is defined as

s
C

a

w
w

=η
176

220
0.8

cs
Ca

C

kJ
w kJkgw

kg
= = =
η

1.005 (475.4 300) 176.0kJ kJK
kg K kg

= − =
⋅



The isentropic kinetic energy at the nozzle exit is the maximum possible 
kinetic energy at the nozzle exit; therefore, the actual kinetic energy at the 
nozzle exit is less than the isentropic value.  Since efficiencies are defined to 
be less than 1, the nozzle isentropic efficiency is defined as

Nozzle:

ηN
a

s

Actual KE at nozzle exit
Isentropic KE at nozzle exit

V
V

= = 2
2

2
2

2
2

/
/

Nozzle

T1
P1

T2
P2


