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A numerical method for computing three-dimensional, time-dependent incompressible flows 
is presented. The method is based on a fractional-step, or time-splitting, scheme in con- 
junction with the approximate-factorization technique. It is shown that the use of velocity 
boundary conditions for the intermediate velocity field can lead to inconsistent numerical 
solutions. Appropriate boundary conditions for the intermediate velocity field are derived and 
tested. Numerical solutions for flows inside a driven cavity and over a backward-facing step 
are presented and compared with experimental data and other numerical results. I@- 1985 
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1. INTRODUCTION 

In this paper we present a numerical method for solving three-dimensional, time- 
dependent incompressible Navier-Stokes equations. The major difficulty in obtain- 
ing a time-accurate solution for an incompressible flow arises from the fact that the 
continuity equation does not contain the time-derivative explicitly. The constraint 
of mass conservation is achieved by an implicit coupling between the continuity 
equation and the pressure in the momentum equations. One can use an explicit 
time-advancement scheme which obtains the pressure at the current time-step such 
that the continuity equation at the next step is satisfied. However, for fully implicit 
or semi-implicit schemes, the aforementioned difficulty prevents the use of the con- 
ventional alternating-direction-implicit (ADI) scheme to advance in time as is the 
case for compressible flows. This difficulty can be avoided in two-dimensional cases 
by reformulating the problem in terms of the vorticity and stream-function. For 
three-dimensional problems, one can introduce an artificial compressibility into the 
continuity equation to include the required time-derivative for an ADI scheme. This 
is satisfactory, however, only for the steady-state solutions [ 11. For unsteady 
problems, since the effect of the artificial compressibility has to be minimized, this 
approach produces a highly stiff system for numerical solutions [2]. 

The objective of the present work is to develop a numerical method for solving 
the incompressible Navier-Stokes equations satisfying the conservation of mass 
exactly (within machine round-off). It will also be required that the numerical 
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scheme preserve the global conservation of momentum, kinetic energy, and cir- 
culation in the absence of time-differencing errors and viscosity. It can be shown 
that failure to preserve these conservation properties can lead to numerical 
instabilities [3]. To stabilize the calculations using methods that do not preserve 
these properties, artificial viscosity is often introduced either explicitly or implicitly 
by using dissipative finite-difference schemes, especially for high-Reynolds-number 
flows. It is possible that for low-Reynolds-number flows, a nonconservative scheme 
can produce a stable solution without artificial viscosity, since the viscous terms are 
relatively large and can quickly annihilate the error terms introduced. However, for 
high-Reynolds-number flows, the lack of mass or energy conservations probably 
leads to the numerical instabilities. 

The method developed herein is based on a fractional-step method (e.g., [4, 53) 
in conjunction with the approximate-factorization technique [6, 71. The flow field 
is represented on a staggered grid [8]. The problem of concocting boundary con- 
ditions for the intermediate (split) velocity field is addressed and it is shown that 
the use of velocity boundary conditions can lead to inconsistent and erroneous 
results. Appropriate boundary conditions for the intermediate-velocity field are 
derived using a technique similar to that of LeVeque and Oliger [9]. The Poisson 
equation for the pressure correction is solved by a direct method based on 
trigonometric expansions. In this way the continuity equation is satisfied to 
machine accuracy at every time-step. 

The numerical procedures used in the present method are described in Section 2. 
Section 3 provides a derivation of the boundary conditions for the intermediate- 
velocity field, and numerical results for two different flow geometries are presented 
in Section 4; a summary is given in Section 5. 

2. NUMERICAL METHOD 

In this section we present a variant of the fractional-step method used by Chorin 
[4] for time-advancement of the Navier-Stokes and continuity equations for 
incompressible viscous flows: 

auj a ap I a a at+ax."iuj= --+---q, axj Re axj axj J 

Here, all variables are nondimensionalized by a characteristic velocity and length 
scale, and Re is the Reynolds number. 

The fractional step, or time-split method, is in general a method of 
approximation of the evolution equations based on decomposition of the operators 
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they contain. In application of this method to the Navier-Stokes equations, one can 
interpret the role of pressure in the momentum equations as a projection operator 
which projects an arbitrary vector field into a divergence-free vector field. A two- 
step time-advancement scheme for Eqs. (1) and (2) can be written as 

2;.-u7 1 
-‘=Z’3H’-H:-‘)+;& g+-$+; 

At ( > 
(a,+U:), (3) 

3 

UV+’ , -22; 
At 

= -G(qY’+ ’ ), 

with 

D(uy+‘)=O, (5) 

where Hi = -(6/6x,) uiui is the convective terms, 4 is a scalar to be determined, 
6/6xi represents discrete finite difference operators, and G and D represent discrete 
gradient and divergence operators, respectively. We used the second-order-explicit 
Adams-Bashforth scheme for the convective terms and the second-order-implicit 
Crank-Nicholson for the viscous terms. Implicit treatment of the viscous terms 
eliminates the numerical viscous stability restriction. This restriction is particularly 
severe for low-Reynolds-number flows and near boundaries where stretched meshes 
are used. Equation (3) is a second-order-accurate approximation of Eq. (1) with 
@/axi excluded. By substituting Eq. (4) into (3), one can easily show that the 
overall accuracy of the splitting method is still second order. Note that $ is different 
from the original pressure: in fact, p = 4 + (At/2 Re) V*d. All the spatial derivatives 
are approximated with second-order central differences on a staggered grid [S]. 
Figure 1 illustrates the staggered grid. With the staggered mesh, the momentum 
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FIG. 1. The staggered mesh in two dimensions. 



FRACTIONAL-STEP METHOD 311 

equations are evaluated at velocity nodes, and the continuity equation is enforced 
for each cell. One important advantage of using the staggered mesh for incom- 
pressible flows is that ad hoc pressure boundary conditions are not required. 
Furthermore, it can be shown [lo] that with this approximation of spatial 
derivatives and in the absence of time-differencing errors and viscosity, global con- 
servations of momentum, kinetic energy, and circulation are preserved. It should be 
pointed out that schemes that do not require ad hoc boundary conditions on non- 
staggered grids have been developed, but those schemes are based on spectral 
methods [ll, 121. The main disadvantages of staggered grids are that some of the 
velocity components are not defined on the boundaries and extension to higher 
orders is difficult. 

Equation (3) can be rewritten as 

(1-A,-A,-A,)(li,-ul)=~(3Hf-H:~‘) 

+ 2(A, + A, + A,) uy, 
(6) 

where A, = (At/2 Re)(6’/6x:), A, = (At/2 Re)(s2/Jx:), A) = (At/2 Re)(62/6x$. The 
left-hand side of Eq. (6) is then approximated as follows: 

(l-A,)(1--A,)(I--A,)(lii-u:)=~(3H1-H1-’) 

+2(A,+A,+A,)u;. 
(7) 

Equation (7) is an O(dt3) approximation to Eq. (6). However, it requires inversions 
of tridiagonal matrices rather than inversion of a large sparse matrix, as in the case 
of Eq. (6). This results in a significant reduction in computing cost and memory. 

Equations (4) and (5) can be solved as coupled system of equations for u;+ ’ and 
4 ’ + ’ with boundary conditions for u; + l. Note that since 4” + ’ is defined at the cen- 
ter of each cell, there is a sufficient number of equations for u; + l and @‘+ ’ without 
the need for boundary condition for @‘+ ‘. Equations (4) and (5) can be combined 
to eliminate u;” and thus obtain a set of equations for @‘+ ‘. For the cells not 
adjacent to the boundaries, these equations take the form of the discrete Poisson 
equation, 

for i = 2, 3 ,..., N, - 1, j = 2, 3 ,..., N, - 1, k = 2, 3 ,..., N, - 1. For the cells adjacent to 
the boundaries, incorporation of the velocity boundary conditions yields a modified 
set of equations. For example, for the cells adjacent to the lower boundary (j= l), 
we obtain 
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(-$+-$)rn~+Y, l,k)+~,3,2)~x,,l,2)~~+“~~~~(~~~~~;1’:~~ lTk) 

1 u;+‘(i, l/2, k) - z&(i, l/2, k) 
‘;DLdc 

x,(3/2) - x2( l/2) 

E Q(i, 1, k) (9) 

for i = 2, 3,..., N, - 1, k = 2, 3,..., N, - 1. A solution to Eq. (8) and the corresponding 
boundary equations can be easily obtained using transform methods [ 131. Let 

N, - I Nj - 1 
@+‘(i,j, k)= c 1 &ki m)cos I=0 m=O 

[$-+;)]cos[T(k-;)] (10) 

for i=l,2 ,..., N,, j=l,2 ,..., N,, k = 1, 2 ,..., N,. Substituting Eq. (10) and the 
corresponding expansion for Q into (8) and (9) and using the orthogonality 
property of cosines, we obtain 

where k; = 2[ 1 - cos(xl/N,)]/dx~ and k; = 2[ 1 - cos(xm/N,)]/dx~ are the 
modified wave numbers. For each set of wave numbers, the above tridiagonal 
system of equations can be easily inverted, and dn+ ’ is obtained from Eq. (10). The 
final velocity field u; + ’ is then obtained from 

q+‘= zi, - AtG(qP + ‘). (12) 

Note that 4 is determined to within an additive constant. When kk = k; = 0 in 
Eq. (ll), this arbitrary constant is prescribed as the average of 4 in the (xi, x3) 
plane adjacent to the lower boundary. It can be shown that the expression for Q is 
consistent with the compatibility condition which guarantees existence of a solution 
for 4. This compatibility condition is analogous to the well-known solvability con- 
dition for the Poisson’s equation with Neumann boundary condition; and in the 
case of kk = k; = 0, it provides for prescription of the arbitrary constant for I$ in 
addition to enforcing all the boundary equations such as (9). In solving the system 
of linear algebraic equations for 4 using the series expansion (lo), we have assumed 
that uniform mesh spacings are used in the streamwise and spanwise directions (xi 
and x3). If nonuniformly spaced mesh points are used in these directions or com- 
plicated domains are considered, one has to resort to iterative techniques such as 
multigrid methods to solve for 4. 

3. BOUNDARY CONDITIONS 

Boundary conditions for the intermediate velocity fields in time-splitting methods 
are generally a source of ambiguity. At each complete time-step, only the boundary 
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conditions for the velocity field are given and those of the intermediate velocity field 
are unknown. We will show in this section that except when the boundary con- 
ditions for the intermediate velocity field are chosen to be consistent with the gover- 
ning equations, the solution may suffer from appreciable numerical errors. In the 
present work, we derive the appropriate boundary conditions for the intermediate 
velocity field using a method suggested by LeVeque and Oliger [9]. 

To construct the proper boundary conditions for iii, we regard tii as an 
approximation to u*(x, t n + i), where the continuous function u*(x, t) satisfies 

ui*(x, t,) = Ui(X, t,). 

Hence 

z&x24*(x, t, + At) 

a*ll* 
=u*(x, tJ+Atfg+fArz- (32 + ... 

=u,?(x,t,)+At H:+&V’u: 
)2 d ) 

+1At2d If~+&V*@ + . .._ 

Since u:(x, t,) = ui(x, t,), 

(14) 

(15) 

=ui(X, t,+ 1) + At g+ O(At2). 
I 

By keeping the first two terms, we have boundary conditions accurate to @At*). 
Since p = 4 + O(At/Re), we can in fact use fii= uy+ ’ + At$Y’/axi with the same 
accuracy, thus avoiding the computation of pressure explicitly. 

These boundary conditions are tested in computing the following two-dimen- 
sional unsteady flow which is a solution to the Navier-Stokes and continuity 
equations [14,15]: 

uI(xI, x2, t) = -cos x, sinx, e-*’ 

24,(x,, x2, t) = sin x1 cos x2 eP2r 

p(x,, x2, t) = - +(cos 2x, + cos 2x2) eC4’. 

(16) 
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TABLE I 

Maximum Error after 30 Steps: E,,,/u,,, 

Boundary conditions 

20x20 8.172 x 1O-4 1.085 x 1O-4 
40x40 1.127 x 10m3 7.678 x 1O-5 

Computations are carried out in the domain, 0 6 x,, x2 < rc. The maximum dif- 
ference between the exact and numerical solutions from four different runs are listed 
in Table I. The superiority of the results using boundary conditions (15) over the 
results using the velocity boundary condition, zi, = u; + ’ , is clearly evident. In fact, 
the error for the latter case increases when the mesh is refined. This indicates that 
the fractional-step method with the latter boundary condition is an inconsistent 
scheme. To determine the overall accuracy of the scheme using the boundary con- 
dition (15), three calculations are performed with three different mesh sizes but 
keeping the Courant number constant. The variation of the maximum error in uI 
with mesh refinement is plotted in Fig. 2; it shows that the scheme is indeed second- 
order accurate. Similar plots for u2 and p yield the same results. As a further check, 

1 2 4 
AxJAn 

‘ref 

FIG. 2. Maximum error as a function of mesh refinement. 
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the two-dimensional unsteady flow given by Eq. (16) is computed with u1 and u2 
interchanged and p with the opposite sign, and the second-order accuracy is also 
achieved. 

Since the boundary condition derived in Eq. (15) is extrapolative, numerical 
experiments are performed to determine whether the implicit part of the scheme 
with the boundary condition (15) is unconditionally stable. The following equations 
are numerically integrated in 0 < x1, x2 6 1. 

au, -= -$+57&, 
at l Re 

az.4, ap 1 
-= --+-v2u2 at 2 Re 

u,(O, x*) = u*( 1, x*) = 2+(X1) 0) = U2(XI) 1) = 0. 

This is essentially the driven cavity problem (see Section 4.1) without the nonlinear 
terms. Stable solutions are obtained for all the time steps considered (as large as 
dt/(Re Ax’) = 104) indicating that the implicit part of the numerical scheme presen- 
ted in this paper is indeed unconditionally stable. The nonlinear terms are treated 
explicitly and impose a restriction on the largest time step that can be used. 

4. NUMERICAL EXAMPLES 

In this section we present numerical results obtained from applications of the 
aforementioned numerical method to two laminar flow problems. Both problems 

Xl 
u, =u2=0 

3. Geometry of the driven cavity flow. 
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FIG. 4. Streamlines and contours of constant vorticity. (a) Re = 1, (b) Re = 400, (c) Re = 2,W. 
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(b) 

Fro. 5. Velocity vectors. (a) Re= 1, (b) Re= 100, (c) Re=400, (d) Re= loo0, (e) Re=‘2OW (f) 
Re = 5000. 
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have been used widely as standard test cases for evaluating the stability and 
accuracy of numerical methods for incompressible flow problems. 

4.1. Flow in a Driven Cavity 

Figure 3 shows the geometry and the boundary conditions for the flow in a 
driven cavity together with the appropriate nomenclature. Flow is driven by the 
upper wall, and several standing vortices exist inside the cavity whose charac- 
teristics are functions of Reynolds numbers. Figures 4 and 5 show the computed 
results of streamlines, contours of constant vorticity, and velocity vectors for several 
Reynolds numbers. The purpose of the velocity-vector figures is to show the corner 
eddies, which are too weak to be displayed clearly by the streamlines. They are 
drawn parallel to the flow direction at each mesh point. At Re = 1, this flow is 
almost symmetric with respect to the centerline, and two corner eddies are visible. 
As Reynolds number increases, the center of the main vortex moves toward the 
downstream corner before it returns toward the center at higher Reynolds numbers. 
In the Reynolds number range, 1000-2000, the third corner eddy is formed at the 
upper left corner. At Re = 5000, a tertiary corner eddy is visible. In Fig. 6, the 
velocity at the middle of the cavity for Re = 400 is shown in comparison with other 
computed results. Two numerical results with different grid sizes are shown from 
the present computations. Both results, 21 x 21 and 31 x 31, are in good agreement 
with those of Rurggraf [ 161 and Goda [ 171. Although not shown here, Goda 

-1 0 1 

9 

Re=400 

FIG. 6. Profile of streamwise velocity at the midplane of the cavity (x1 =O.SL.) for Re =400: -, 
31 x 31, Burggraf [16], Coda [17]; 0, 21 x21; II, 31 x 31, present results. 
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TABLE II 

Stream-Function and Vorticity at Center of Primary Vortex at Re = 1000 

Ghia et a/. 1163 Present Benjamin and Denny [ 171 Schreiber and Keller [ 181 
(129 x 129) (97 x 97) (101 x 101) (141 x 141) 

*, -0.118 -0.116 -0.118 -0.116 
r 
5, - 2.050 - 2.026 - 2.044 - 2.026 

reported a rather poor agreement when he used a 21 x 21 mesh for this Reynolds 
number. In Table II, the magnitudes of the stream-function and vorticity at the cen- 
ter of the primary vortex from the present calculations are compared with those of 
the other investigators [ 18-201 at Re = 1000. In Table III, for different Reynolds 
numbers, the same quantities from the vorticity stream-function calculations of 
Ghia et al. [IS] and Schreiber and Keller [20] are compared. 

In their experimental study, Koseff et al. [21] observed Taylor-Gortler-type vor- 
tices, which are formed as a result of the streamline curvature owing to the primary 
vortex. This is the first observation of such vortices in a cavity flow. Their 
numerical simulation, however, failed to reproduce this three-dimensional structure. 
We carried out three-dimensional computations to examine this spanwise (xX) vor- 
tical structure in a square cavity. To initialize the calculation, small random distur- 
bances in the spanwise direction (.x3) are added to the solution of two-dimensional 
cases. Using periodic boundary conditions in the spanwise direction, the com- 

TABLE III 

Stream-Function and Vorticity at Center of Primary Vortices 
for Different Reynolds Numbers 

Re 
Present 
*, (5‘) 

Ghia et al. 1163 Schreiber and Keller [ 1 S] 
$, (i‘) *< (ir,,) 

1 -0.099 (-3.316) -0.100 (-3.232) 
65 x 65 121 x 121 

100 -0.103 (-3.177) -0.103 (-3.166) -0.103 (-3.182) 
65 x 65 129 x 129 121 x 121 

400 -0.112 (-2.260) -0.114(-2.295) -0.113 (-2.281) 
65 x 65 257 x 257 141 x 141 

1000 -0.116(-2.026) -0.118 (-2.050) -0.116 (-2.026) 
91 x 97 129 x 129 141 x 141 

3200 -0.115 (-1.901) -O.lZO(-1.989) 
97x97 129x 129 

4000 -0.114 (- 1.879) -0.112 (- 1.805) 
97 x 97 161x161 

5000 -0.112 (- 1.812) -0.119(-1.860) 
97 x 97 257 x 257 
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FIG. 7. Velocity vectors in an (.Y~-.Y~) plane through the geometric center of the cubic cavity 
(x, =0.52). 

putations are carried out for various Reynolds numbers. The spanwise vertical 
structure are observed only for high-Reynolds-number flows (Re 2900). In Fig. 7, 
the velocity vectors in the plane perpendicular to the primary vortex show the 
existence of the counterrotating vortices at Re = 1000. This case is computed using 
32 x 32 x 32 grid points. The maximum spanwise (x3) velocity in this plane is 
uj = 0.043, which indicates the vertical structure is very weak. Although Goda [ 173 
calculated the flow in a three-dimensional cavity, no such three-dimensional struc- 
ture was reported. 

4.2. Flow over a Backward-Facing Step 

The flow over a backward-facing step in a channel provides an excellent test case 
for the accuracy of numerical method because of the dependence of the reat- 
tachment length x, on the Reynolds number. Excessive numerical smoothing in 
favor of stability will result in failure to predict the correct reattachment length. 

PARABOLIC INFLOW u, = u2 = 0 ON WALLS 

BOUNDARY 
DIVIDING STREAMLINE 

x2 

t 

REATTACHMENT 

FIG. 8. Flow over a backward-facing step (1:2 expansion ratio). 
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FIG. 9. Reattachment length as a function of Reynolds number: 0, data from Armaly el al. [22]; ---; 
computation of Armaly ef al.; -, present results. 

In this paper we report our two-dimensional computations of laminar flow over a 
backward-facing step. The geometry and boundary conditions for this flow are 
shown in Fig. 8. At the inflow boundary, located at the step, a parabolic profile is 
prescribed. All the results presented are obtained using 101 x 101 grid points and 
the downstream boundary was located at x = 30/z, where h is the step height. Both 
Neumann and Dirichlet outflow boundary conditions are used, and the two results 
are identical. In Fig. 9, numerical results for different Reynolds numbers are shown 
in comparison with the experimental and computational results of Armaly et al. 
[22]. The dependence of the reattachment length on Reynolds number is in good 
agreement with the experimental data up to about Re = 500. At Re = 600, the com- 
puted results start to deviate from the experimental values. A mesh-refinement 
study, as well as variation of the location of downstream boundary at this Reynolds 
number, showed that the difference between the experimental and computational 
results is not a result of numerical errors. It is most likely, as Armaly et al. [22] 
have pointed out, that the difference is due to the three-dimensionality of the 
experimental flow at this Reynolds number. Three-dimensional computations of the 
flow over a backward-facing step, which demand extensive computational time, are 

FIG. 10. Streamlines at Re = 600. 
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currently under way and will be reported in a future article. In comparison with the 
numerical results of Armaly et al. [22] (using TEACH code), however, the present 
results show a much higher reattachment length. 

Armaly et al. [22] reported the existence of a secondary separation bubble on 
the no-step wall at Re = 1000. The length of the secondary bubble at Re = 1000 was 
10.4 step-heights and the length decreased for higher Reynolds numbers. Figure 10 
shows the computed streamlines at Re = 600, indicating the secondary separation 
bubble on the no-step wall; the bubble length is 7.8 step-heights. At Re = 800, the 
length increased to 11.5 step-heights. 

5. SUMMARY 

A numerical method was presented for solving three-dimensional, time-dependent 
incompressible flows; the method is based on the fractional-step method used in 
conjunction with the approximate-factorization scheme. The three-dimensional 
Poisson equations were solved directly by a transform method, and the velocity 
field satisfied the continuity equation up to machine accuracy. The method is 
second-order accurate in both space and time. Proper boundary conditions for the 
intermediate (split) velocity field were derived and tested against a known solution, 
and laminar flows in a driven cavity and over a backward-facing step were 
calculated at several Reynolds numbers. The numerical results are in good 
agreement with experimental data and other numerical solutions. 
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