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Lagrangian particle tracking simulation is performed to investigate the motion and mixing of cells
and immunomagnetic beads suspended in a buffer fluid flow introduced into a micro serpentine
mixer. Distributed external magnetic fields, which vary periodically in space and time, are applied
in order to drive the magnetic beads in a chaotic manner and to enhance mixing. Influence of
the magnetic forcing conditions, i.e., the amplitude and frequency, on the performance of mixer is
examined.

I. INTRODUCTION

In regenerative medicine, it is often required to extract cer-
tain kinds of cells from a sample mixture, e.g., mesenchymal
stem cells from blood or bone marrow. One of the efficient
techniques for this extraction is the use of magnetic beads
coated with the antibody corresponding to the antigen of the
target cells.1 This technique is called as immunomagnetic cell
sorting (IMCS) and the principle and procedure of separation
is shown in Fig. 1. In the first mixing process, magnetic beads
coated with an antibody (i.e., immunomagnetic beads) attach
the target cells that have the corresponding antigen. After the
mixing, only the cells attached by the beads can be isolated
from the mixture by using magnetic forces in a separator. One
of the problems in the conventional IMCS equipment is the
need of large amount of sample, say on the order of 1 liter,
and high operation cost. A very small IMCS device, which
has a potential to reduce the sample, cost, and possible infec-
tion, is therefore needed and currently under intensive study.

A key issue for successful development of such a micro
IMCS device is how to achieve effective mixing of beads and
cells in a flow of buffer fluid under a low-Reynolds-number
environment. To resolve this, two different strategies have
been proposed. One is passive mixing, which uses conduits
of complex two- or three-dimensional geometry.2–4 The other
is active mixing, which uses external forcing, such as pres-
sure perturbations,5, 6 dielectrophoretic forces,7 and magnetic
forces.8 Generally speaking, passive mixer does not need ad-
ditional energy so that the system would be simpler, whilst ac-
tive mixer offers higher performance within a smaller space.
In many cases, these are designed to enhance the mixing by
utilizing so-called the Lagrangian chaos.9

In order to optimize the design of such micro mixing de-
vices, effects of the design parameters on the mixing perfor-
mance should be investigated. For that purpose, numerical
simulation has a merit because systematic assessment can be
easily made with different values of design conditions. There-
fore, the objective of the present study is to numerically inves-
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tigate the performance of an active immunomagnetic mixer
under different operating conditions. Here, we consider the
magnetic mixer of Suzuki et al.8 and perform Lagrangian par-
ticle tracking simulations of the motion of magnetic beads and
cells in this mixer.

II. MICRO IMMUNOMAGNETIC MIXER

We consider an micro immunomagnetic mixer proposed by
Suzuki et al.,8 as shown in Fig 2. Plane and side views of
one mixer unit are shown in Fig. 3. The length and the width
are Lx and Ly, and their directions are denoted as x and y,
respectively. The out-of-plane direction is denoted as z and
the height is Lz. Two obstacles are placed at (Lx/8 ≤ x ≤
Lx/4, Ly/2 ≤ y≤ Ly) and (5Lx/8≤ x ≤ 3Lx/4, 0 ≤ y≤ Ly/2)
to make the conduit in a serpentine shape.
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FIG. 1. Schematic of the immunomagnetic cell sorting.

FIG. 2. Micro serpentine immunomagnetic mixer developed by
Suzuki et al. (2004).
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FIG. 3. Geometry of the micro mixer by Suzuki et al. (2004): (a)
plane view; (b) side view. Symbols in the conductors represent the
directions of positive current.
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FIG. 4. Operation diagram of electric current.

Four parallel magnetic conductors (labeled as C1 through
C4 in Fig. 3), of which width is Lx/8, are embedded with
equal spacing (Lx/4) in the bottom wall. A counter electric
current is imposed on a pair of neighboring conductors to
generate a magnetic force field around them. The current is
sequentially switched on (I = I0) and off (I = 0) with a period
of T , as shown in Fig. 4. As also shown in the figure, these
four phases in one period are called as Phases I to IV. The
Strouhal number of the magnetic actuation, St , is defined by
using the period of magnetic actuation, T , and the conductor
spacing, Lx/4, as,

St =
(1/T )(Lx/4)

Ub
=

Lx

4UbT
. (1)

Suzuki et al.8 fabricated, by using microelectromechani-
cal systems (MEMS) techniques, two kinds of mixers of dif-
ferent sizes. The mixer is composed of a series of mixer
units connected each other. The two sizes of a unit are
(Lx, Ly, Lz) = (160 µm, 80 µm, 35 µm) and (Lx, Ly, Lz) =

(320 µm, 160 µm, 35 µm). In their experiment, a buffer fluid
containing immunomagnetic beads was introduced in the up-
per half of the conduit (Ly/2 ≤ y ≤ Ly), whereas a pure buffer
fluid was introduced in the lower half.

III. NUMERICAL PROCEDURE

An iso-thermal, incompressible water flow is considered.
Throughout this work, the bulk mean velocity of the flow, Ub
is on the order of 100 µm/s. Therefore, the bulk Reynolds
number of the flow, Reb =UbLy/ν, is on the order of 1×10−2,
so that the flow is laminar. The velocity field is computed by
using the second-order accurate finite difference method on an
equi-spaced grid system.

The trajectories of immunomagnetic beads and cells are
computed by using the one-way coupling Lagrangian par-
ticle tracking. We assume, for simplicity, that both beads
and cells (referred hereafter as particles, unless specified) are
rigid spheres of 1 µm in diameter, although in reality cells
are deformable and their typical diameters is on the order of
dp ∼ 10 µm. The density of the beads is ρp = 1580 kg/m3.
The relaxation time of beads, τp = d2

pS/(18ν) (where S =
ρp/ρ f is the density ratio of particle to fluid) is on order of
τp ∼ 1×10−7. Thus, the simplified particle equation of mo-
tion reads,

d~up

dt
=

1
τp

(~u f −~up)+
~F

mp
−

(

1−
1
S

)

g~ez , (2)

where~up and ~u f are particle and fluid velocities, respectively.
The last two terms in the particle equation of motion repre-
sents the external forces, i.e., the magnetic force induced by
the conductors embedded under the conduit, ~F , and the gravi-
tational force. Note that the Brownian force, the inter-particle
collisions and the two-way coupling effects are neglected for
simplicity.

The magnetic field in the conduit, ~H, is computed by using
the Biot-Savart law, which reads

~H(~x) =
�
~x′∈Ω

~I(~x′)× (~x−~x′)

2π|~x−~x′|2
dΩ , (3)

where~I is the current vector. The integration is done over the
volume of conductors, Ω, which are assumed infinitely long
in the y direction.

The magnetic force acting on an immunomagnetic bead is
computed by

~F = µ0µr(1−Nd)Vm(~H ·~∇)~H , (4)

where µ0 is the permeability in vacuum, and µr, Vm and Nd
are the relative permeability, the volume, and the demagne-
tizing factor of the beads, respectively. Following the exper-
iment,8 spherical beads of carboxyl-polystyrene (µr = 11.3,
Nd = 0.333) are assumed.

The non-dimensional amplitude of the magnetic force, α
(the amplitude factor), is defined as,
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FIG. 5. Nondimensionalized magnetic force (Phase III).

α =
umax

Ub
, (5)

where umax is the terminal velocity due to the maximum mag-
netic force, Fmax, i.e.,

umax = τp
Fmax

mp
. (6)

It is obvious from the definition that the amplitude factor, α,
expresses the relative magnitude of magnetic-force-induced
particle velocity to the fluid velocity.

The particle equation of motion, Eq. (2), is stiff due to the
small value of τp. Therefore, it is integrated in time by using
the implicit Euler method. The fluid velocity and the magnetic
field at a particle position are interpolated from the neighbor-
ing grid points by using the linear interpolation scheme.

IV. RESULTS

A. Two-dimensional simulation

We begin with simulations of particle motion in a (x− y)
two-dimensional plane.

The dimension of the two-dimensional conduit is (Lx, Ly)=
(160 µm, 80 µm). The computational domain is periodic at
both ends (x = 0 and x = Lx = 2Ly). The numbers of com-
putational grids are 80 and 40 in the x and y directions, re-
spectively. The bulk Reynolds number is Reb = 0.0032. For
the computation of the magnetic fields imposed, the computa-
tional plane is assumed to represent that located at 5 µm above
the bottom wall, because Suzuki et al.8 observed in their ex-
periment that the magnetic beads are accumulated in a thin
layer of 0 < z < 5 µm. As an example, the profile of the non-
dimensional magnetic force exerted on the beads in Phase III
is depicted in Fig. 5.

Figure 6 shows a typical effect of the magnetic actuation
in the present mixer. The beads are initially distributed uni-
formly in the upper half of the conduit. Without the magnetic
actuation (see Fig 6a), the beads remain in the upper half even
after sufficiently long time. There is no bead which travels
across the streamlines. With the magnetic actuation at the am-
plitude factor of α = 0.55 and the Strouhal number of St = 1.0
(Fig 6b), the beads are stirred and mixed in the entire domain.

(a)

(b)

FIG. 6. Positions of magnetic beads after a long time: (a) without
magnetic actuation; (b) with magnetic actuation (α = 1.55, St = 1.0).
Lines represent the streamlines of fluid.
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FIG. 7. Schematic of the procedure to compute the largest Lya-
punov exponent.

In order to quantitatively discuss on the mixing enhance-
ment by this scheme of magnetic actuation, the following two
indices are computed:

• Largest Lyapunov exponent, λ1. The largest Lya-
punov exponent, λ1, is the largest one in the spectrum
of Lyapunov exponents, i.e., λ1 > λ2 > · · ·> λn (where
n is the size of dimensions). This quantity is often used
to measure the degree of chaos. If λ1 > 0 the flow is re-
garded as chaotic. For the computation of λ1, we adopt
the simplified method proposed by Sprott,10 as shown
in Fig. 7. First, particles are distributed in the conduit.
For each particle, an imaginary particle is placed within
an infinitesimal distance (d0). Then, the trajectories of
these particles are tracked. When the distance, d1(t),
between real and imaginary particles becomes far apart,
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the approximate re-orthonormalization is performed by
pulling back the imaginary particle along the line of
separation to re-define d0. Namely, λ1 is to be com-
puted by

λ1 = lim
n→∞

1
n∆t

n

∑
k=1

ln
(

dk
1

dk
0

)

. (7)

It is known that this simplified procedure gives a suffi-
ciently accurate value of λ1.

• Ratio of the number of tagged cells to the total num-
ber of cells. This quantity is computed in a compu-
tational domain with the inflow and outflow boundary
conditions. Multiple mixer units are connected to each
other, like in the experimentally tested device.8 Nine
units are used in the present simulation. The magnetic
beads and cells are introduced in the upper and lower
halves of the first unit, respectively. The magnetic actu-
ation is applied in the regions from the fourth to eighth
units. When the distance between a magnetic bead and
a cell becomes less than the sum of their radii, the cell
is considered tagged. The number of such tagged cells,
Ntagged, as well as the total number of cells, Ntotal , is
counted at the outlet. Their ratio, γ, is simply defined as

γ =
Ntagged

Ntotal
. (8)

In the present simulation, we allow the cells to be
tagged by multiple magnetic beads.

Figure 8 shows the dependency of λ1 on the actuation pa-
rameters, α and St . In the cases of small amplitudes (α ≤
1.00), λ1 is always positive, and this fact means that chaotic
mixing is induced. The best mixing is achieved when St = 1.0
and α ≤ 1.55.
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FIG. 8. Dependency of the largest Lyapunov exponent, λ1, on the
actuation parameters, α and St .

(a)

(b)

(c)

FIG. 9. Positions of magnetic beads in each actuation phase at
α = 3.48 and St = 1.0: (a) Phase II; (b) Phase III; (c) Phase IV. Ar-
eas enclosed by dashed lines represent the active conductors.

In the cases of large amplitude (α ≥ 1.55), λ1 is positive
only at St = 1.4 and is negative for other values of St . The
negative values of λ1 indicate that the magnetic beads are ac-
cumulated in certain regions. In such cases, they are trapped
near the conductors. For example, the positions of magnetic
beads in each actuation phase at α = 3.48 and St = 1.0 (i.e.,
the case of λ1 < 0) are shown in Fig. 9. We can observe that
most of the beads are accumulated near the active conductor
in the downstream side.

The dependency of the tagged-cell ratio, γ, on the actuation
parameters, α and St , is slightly different from that of λ1, as
shown in Figure 10. Tagging takes place even when λ1 is
negative, e.g., in the case of α = 3.48 and St = 1.0. On the
other hand, there are cases where the tagging is not frequent
despite a high value of λ1, e.g., the case of α = 1.0 and St =
1.4. The positions of beads in the latter case (i.e., α = 1.0 and
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FIG. 11. Positions of magnetic beads at α = 1.0 and St = 1.4
(Phase III).
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FIG. 12. Correlation between λ1 and γ. Symbols represent α and
are the same as those in Fig. 10.

St = 1.4) are plotted in Fig. 11. The mixing takes place only
in the upper half in the conduit, where the cells are absent, and
this causes the lower value of γ despite the higher value of λ1.

The relationship between λ1 and γ is more clearly shown in

Fig. 12. Frequent tagging, i.e., a large value of γ, is associated
with either a large positive value or a large negative value of λ.
The large value of γ associated with λ1 > 0 is simply attributed
to the mixing enhancement, whereas that with a λ1 < 0 is due
to the entrapment of beads near the conductors, as has been
observed in Fig. 9.

These two mechanisms are more clearly illustrated in Fig.
10, in which the positions of first contact between a cell and
a magnetic bead are plotted. In Fig. 10a, (the case of λ1 > 0)
the contacts take place in the lower half of the conduit, where
the cells are flowing. In Fig. 10b, (the case of λ1 < 0) the most
of contacts occurs around (x/Ly,y/Ly) = (1, 0.5), where the
magnetic beads are trapped by the strong magnetic force. A
noteworthy observation is that the cell-tagging is almost com-
pleted within two mixer units (0 ≤ x/Ly ≤ 4).

B. Three-dimensional simulation

Three-dimensional simulations has also been made. The
dimension of the conduit is (Lx, Ly, Lz)= (320 µm, 160 µm,
35 µm). The bulk Reynolds number is Reb = 0.025. These pa-
rameters are the same as those in the experiment.8 The num-
bers of computational grids are 64, 32 and 16 in the x, y and z
directions, respectively. Simulation is repeated with St = 1.0
and different values of α. However, in all test cases, all the
beads sank toward the bottom wall and mostly accumulated
near the conductors.

This is natural because both the magnetic and gravitational
forces work downward, and there is no upward-driving force
considered in the simulation. In the experiment by Suzuki et
al.,8 the magnetic beads seem to flow without such a signifi-
cant accumulation. Therefore, we may have missed to account
for some upward forces in the present simulation.

A possible candidate for the upward force is the lift force.
Under the present conditions, the Stokes length scale, LS =
ν/umax, and the Saffman length scale, LG =

√

ν/|(∂ui/∂x j)|,
are estimated as LS ' 2× 10−3 m and LG ' 1× 10−4 m, re-
spectively. Therefore, wherever a particle is located in the
conduit (Lz = 3.5 × 10−5 m), the distance between the parti-
cle and the wall, l, is much less than min(LS,LG). According
to the criteria proposed by Wang et al.,11 the optimum expres-
sion of the lift force under the condition of l � min(LS,LG)
is that by Cherukat and McLaughlin,12 which includes both
the shear and wall-induced lift forces. This lift force works
upward when the magnetic beads are attracted toward the up-
stream direction. However, its magnitude is estimated as only
one tenth of the gravitational force under the present condi-
tions.

V. CONCLUSIONS

We have numerically investigated the mixing enhancement
of magnetic beads and cells in a micro immunomagnetic
mixer of Suzuki et al.8 The two-dimensional simulation clar-
ifies a set of parameters which increase the largest Lyapunov
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FIG. 13. Positions of the first contact between cells and magnetic
beads: (a) α = 1.0, St = 1.0; (b) α = 6.2, St = 1.0.

exponent and the number of cells tagged by the immunomag-
netic beads.

The simulation results reveal two different mechanisms
for the enhancement of cell-tagging by the immunomagnetic
beads: (1) the chaotic mixing, and (2) the entrapment of beads
near the conductors. The former mechanism appears when the
Strouhal number, defined based on the frequency of magnetic
actuation and the conductor spacing, is unity and the terminal
velocity of the beads due to the magnetic force is comparable
to the bulk mean velocity of the fluid. The latter mechanism
appears when the magnetic force is stronger. Since the cell-
tagging is almost completed within one or two mixer units
from the inlet, adoption of this operation mode has a merit in
reducing the size of mixing device, if relatively large power
consumption is allowed.

For three-dimensional simulations, there remains a critical
issue of missing upward force.
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